Cellular Stoichiometry of Chemotaxis Proteins in Sinorhizobium meliloti
نویسندگان
چکیده
منابع مشابه
Studies on the role of CheS in Sinorhizobium meliloti chemotaxis
Chemotaxis is the ability of an organism to sense its environment and move towards attractants and away from repellents. The two-component system controlling chemotaxis in bacteria contains a histidine kinase CheA, which is autophosphorylated in response to a signal from a ligand-bound transmembrane methyl-accepting chemotaxis protein. CheA transfers the phosphate group to its cognate response ...
متن کاملFunctional analysis of nine putative chemoreceptor proteins in Sinorhizobium meliloti.
The genome of the symbiotic soil bacterium Sinorhizobium meliloti contains eight genes coding for methyl-accepting chemotaxis proteins (MCPs) McpS to McpZ and one gene coding for a transducer-like protein, IcpA. Seven of the MCPs are localized in the cytoplasmic membrane via two membrane-spanning regions, whereas McpY and IcpA lack such hydrophobic regions. The periplasmic regions of McpU, McpV...
متن کاملVisN and VisR are global regulators of chemotaxis, flagellar, and motility genes in Sinorhizobium (Rhizobium) meliloti.
The known 41 flagellar, chemotaxis, and motility genes of Sinorhizobium (Rhizobium) meliloti contained in the "flagellar regulon" are organized as seven operons and six transcription units that map to a contiguous 45-kb chromosomal region. By probing gene expression on Western blots and with lacZ fusions, we have identified two master regulatory genes, visN and visR, contained in one operon. Th...
متن کاملControl of gluconate utilization in Sinorhizobium meliloti.
The Sinorhizobium meliloti megaplasmid pSymA has previously been implicated in gluconate utilization. We report a locus on pSymA encoding a putative tripartite ATP-independent periplasmic (TRAP) transporter that is required for gluconate utilization. The expression of this locus is negatively regulated by a GntR family regulator encoded adjacent to the transporter operon.
متن کاملCellular stoichiometry of the components of the chemotaxis signaling complex.
The chemotactic sensory system of Escherichia coli comprises membrane-embedded chemoreceptors and six soluble chemotaxis (Che) proteins. These components form signaling complexes that mediate sensory excitation and adaptation. Previous determinations of cellular content of individual components provided differing and apparently conflicting values. We used quantitative immunoblotting to perform ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Bacteriology
سال: 2020
ISSN: 0021-9193,1098-5530
DOI: 10.1128/jb.00141-20